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* If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or

in person during office hours.

Compulsory Part

1.

(a) Let H = (4) = {4k : k € Z} < Z, then for any n € Z, consider the left coset
n+H = {n+4k : k € Z}, here we use the notation n+ H instead of the commonly
written form nH to stress that we are considering addition as the group operation.
Then n + H = m + H if and only if n — m = 4k for some k € Z. Thus the
left coset nf{ only depends on the value of » mod 4. So there are 4 left cosets:
H 1+ H,2+ H,3 + H, they exactly correspond to the set of integers in Z whose
remainder is n = 0, 1, 2, 3 respectively when divided by 4.

(b) Againlet H = (4) = {0,4,8} < Z5 and consider n + H for n € Z;5. Then the
above discussion also holds in this case, meaning that the left cosets of H in Z, are
exactly the set of integers in Z;» whose remainders are n = 0, 1,2, 3. So we have
H1+H={1,509}2+H=1{2,610 and 3+ H = {3,7,11}.

(c) Let s be a reflection, H = (s) = {e, s} < D,, for each reflection r* where k =
0,1,..., k—1, we have the cosets r* H = {r,r*s}. Forr? # r* wehave r/H # r*H.
This is due to 797 =% = 77=% € {e, s} precisely when /=% = ¢, so that j = k. Since
|H| =2 and |D,,| = 2n, by Lagrange’s theorem, [D,, : H| = 2n/2 = n, so we have
described all the left cosets.

2. A 4-cycle in S, will generate a cyclic subgroup of order 4. For example, we may take

o = (1234), and H = (0) = {e,(1234),(13)(24), (1432)}. Note that |H| = 4 and
|S4| = 24, so there are 6 left cosets of H in S.

Clearly e represents the trivial coset 1.

We may continue by taking an element outside H, say (12) and look at the coset repre-
sented by (12): (12)H = {(12), (234), (2413), (143)}.

Again, we can continue by picking an element outside H and (12)H, say (23), and con-
sider (23)H = {(23), (341), (2431), (214)}.

Next, we take (13), we have (13)H = {(13), (12)(34), (24), (14)(23)}.
Next we pick (14), we have (14)H = {(14), (123), (1342), (432)}.

Note that (34) is not in any of the above cosets. So we may pick (34) and consider
(34)H = {(34), (312), (1423), (132) }.

Since we have written down 6 different cosets, they must be all the cosets of H in .S}.

By Lagrange’s theorem, every proper subgroups of G has order dividing |G| = pg, so they
have orders either 1 or p or ¢. If the subgroup has order 1, it is the trivial group, which is
cyclic. Otherwise, the subgroup has order p or ¢, which are assumed to be prime. Recall
that a group of prime order is always cyclic. This finishes the the proof.



4.

See the solution to Tutorial 5 Q2c. Note that we always have H < G <= left and right
cosets of H in (G coincide.

. See Tutorial 5 Q3.

First proof: Consider the sequence of subgroups H N K < H < G, by tower law for
index of subgroups (see Q5 above), we have (G : H N K| = [G : H|[H : HN K]. We
will first show that there is a well-defined injective function

f : {Left cosets of H N K in H} — {Left cosets of K in G},

therefore [H : H N K| < [G : K| = n. The function f is defined by f(aH N K) = aK.
This is well-defined because if a HNK = bHN K, thenab™' € HNK < K, in particular
aK = bK. This function is injective because if f(aHNK) = f(bHNK), thenab™' € K,
but then a H N K and bH N K are cosets in H, so a, b are assumed to be elements of H,
sothat ab™! € HN K, therefore aH N K = bH N K.

From the above, we have (G : HN K| =[G : H|[H : HN K| < [G : H|[G : K] = mn.
The tower law also implies that m = [G : H] divides [G : H N K|, similarly we can apply
the tower law to the sequence H N K < K < G, which would imply that n = [G : K]
divides [G : HN K. Therefore, lem(m, n) divides [G : HN K] and we have lcm(m,n) <
|G : HN K] < mn. Now if ged(m,n) = 1, then lem(m,n) = mn/ged(m,n) = mn.
So both inequality signs must be equality, so [G : H N K| = mn.

Alternatively proof: Let aH € G/H and bK € G/K, we can take their intersection
aH NbK. Since any left H N K coset in G is an intersection ¢(H N K) = ¢cH N cK, we
know that there are at most mn many left H N K cosets in GG. It suffices to show that there
are at least lem(m, n) many cosets. This follows from m and n both divide [G : H N K]
by the tower law (see QS5, and above).

Remark: There is yet an easier proof using Lagrange’s theorem if GG is assumed to be
finite. However, in the infinite case, we have to work with cosets because the groups
G, H, K all have infinite orders.

Optional Part

1.

2.

The subgroup H = (i) is given by {1,4,—1, —i}. Its index is |Q|/|H| = 2, so the left
cosets are simply H and () \ H. The representatives of a coset is simply the elements in
the coset, so they are exactly H and Q \ H = {j, —j, k, —k}.

(a) Recall that any reflection can be expressed as a product of s = s; and r = ry.
Consider the products (sr3)s = sr3s = ssr™3 = r=3 = rs. This calculation
shows that H = {rg,rs, s1,s173} is a subgroup: indeed it suffices to check that it
is closed under multiplication and taking inverse. Each element is its own inverse.
And for multiplications, the only “non-trivial” ones are r3s; = s173 and along with
517351 = 13, which are both in /7. So we have obtained a subgroup of order 4. In

fact, replacing s; with any other reflection works.

(b) Consider H = (ry,s1), then H = {rg, 72,74, 51,172, $174}. It is a subgroup of
order 6. (See HW3 optional Q5b). It is also non-cyclic. Since the element ry has
order 1, ro, 74 has order 3 and sy, s179, s174 has order 2. If it was cyclic, then there
would be some order 6 element.



3. Suppose G is a group with no nontrivial proper subgroup, and |G| > 2, we will first show
that G has prime order. If it was not the case, say |G| is composite, write |G| = mn
for some positive integers m, n that are not equal to 1. Then elements of G would have
order dividing |G|. Tt is impossible to have |g| = |G| for all e # g € G. This is
because if |g| = |G| = mn for some g, then ¢” would have order n. So there are some
non-identity element & € G of order strictly smaller than |G/, so that (h) is a nontrivial
proper subgroup of GG. Now that we know |G| is prime, it must then be cyclic, since a
non-identity element g € G must has order equals to |G|, so it is a generator.

4. If every left coset of H is a right coset of H, then for any left coset g/, there are some
a € G sothat gH = Ha. The condition g € gH = Ha implies that there is some h € H
so that g = ha. So Ha = H g. Since g is arbitrary, we have shown that gH = H g for any
g € G,ie. HAG.

5. Let S be the set of elements in G of order n, note that for any g € GG, we have gSg=! = S,
since |z| = n if and only if |gzg~!| = n. It remains to prove that (gSg~!) = g(S)g~1,
then we have for any g € G,

(S) =(gSg™") =9(S)g™ ",

i.e. (S) is normal.

The equality (gSg~') = g(S)g~"! holds in general for any subset .S, not just the one de-
scribed above. This follows directly from (ga;g=")* - - - (gamg )™ = g(a®* - - - aFm) g,

where the LHS is a general element in (gSg~') and RHS is a general element in g{S)g~'.



