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Compulsory Part

1. (a) Let H = ⟨4⟩ = {4k : k ∈ Z} ≤ Z, then for any n ∈ Z, consider the left coset
n+H = {n+4k : k ∈ Z}, here we use the notation n+H instead of the commonly
written form nH to stress that we are considering addition as the group operation.
Then n + H = m + H if and only if n − m = 4k for some k ∈ Z. Thus the
left coset nH only depends on the value of n mod 4. So there are 4 left cosets:
H, 1 +H, 2 +H, 3 +H , they exactly correspond to the set of integers in Z whose
remainder is n = 0, 1, 2, 3 respectively when divided by 4.

(b) Again let H = ⟨4⟩ = {0, 4, 8} ≤ Z12 and consider n + H for n ∈ Z12. Then the
above discussion also holds in this case, meaning that the left cosets of H in Z12 are
exactly the set of integers in Z12 whose remainders are n = 0, 1, 2, 3. So we have
H, 1 +H = {1, 5, 9}, 2 +H = {2, 6, 10} and 3 +H = {3, 7, 11}.

(c) Let s be a reflection, H = ⟨s⟩ = {e, s} ≤ Dn, for each reflection rk where k =
0, 1, ..., k−1, we have the cosets rkH = {r, rks}. For rj ̸= rk, we have rjH ̸= rkH .
This is due to rjr−k = rj−k ∈ {e, s} precisely when rj−k = e, so that j = k. Since
|H| = 2 and |Dn| = 2n, by Lagrange’s theorem, [Dn : H] = 2n/2 = n, so we have
described all the left cosets.

2. A 4-cycle in S4 will generate a cyclic subgroup of order 4. For example, we may take
σ = (1234), and H = ⟨σ⟩ = {e, (1234), (13)(24), (1432)}. Note that |H| = 4 and
|S4| = 24, so there are 6 left cosets of H in S4.

Clearly e represents the trivial coset H .

We may continue by taking an element outside H , say (12) and look at the coset repre-
sented by (12): (12)H = {(12), (234), (2413), (143)}.

Again, we can continue by picking an element outside H and (12)H , say (23), and con-
sider (23)H = {(23), (341), (2431), (214)}.

Next, we take (13), we have (13)H = {(13), (12)(34), (24), (14)(23)}.

Next we pick (14), we have (14)H = {(14), (123), (1342), (432)}.

Note that (34) is not in any of the above cosets. So we may pick (34) and consider
(34)H = {(34), (312), (1423), (132)}.

Since we have written down 6 different cosets, they must be all the cosets of H in S4.

3. By Lagrange’s theorem, every proper subgroups of G has order dividing |G| = pq, so they
have orders either 1 or p or q. If the subgroup has order 1, it is the trivial group, which is
cyclic. Otherwise, the subgroup has order p or q, which are assumed to be prime. Recall
that a group of prime order is always cyclic. This finishes the the proof.



4. See the solution to Tutorial 5 Q2c. Note that we always have H ⊴ G ⇐⇒ left and right
cosets of H in G coincide.

5. See Tutorial 5 Q3.

6. First proof : Consider the sequence of subgroups H ∩ K ≤ H ≤ G, by tower law for
index of subgroups (see Q5 above), we have [G : H ∩ K] = [G : H][H : H ∩ K]. We
will first show that there is a well-defined injective function

f : {Left cosets of H ∩K in H} → {Left cosets of K in G},

therefore [H : H ∩K] ≤ [G : K] = n. The function f is defined by f(aH ∩K) = aK.
This is well-defined because if aH∩K = bH∩K, then ab−1 ∈ H∩K ≤ K, in particular
aK = bK. This function is injective because if f(aH∩K) = f(bH∩K), then ab−1 ∈ K,
but then aH ∩K and bH ∩K are cosets in H , so a, b are assumed to be elements of H ,
so that ab−1 ∈ H ∩K, therefore aH ∩K = bH ∩K.

From the above, we have [G : H ∩K] = [G : H][H : H ∩K] ≤ [G : H][G : K] = mn.
The tower law also implies that m = [G : H] divides [G : H ∩K], similarly we can apply
the tower law to the sequence H ∩K ≤ K ≤ G, which would imply that n = [G : K]
divides [G : H∩K]. Therefore, lcm(m,n) divides [G : H∩K] and we have lcm(m,n) ≤
[G : H ∩K] ≤ mn. Now if gcd(m,n) = 1, then lcm(m,n) = mn/ gcd(m,n) = mn.
So both inequality signs must be equality, so [G : H ∩K] = mn.

Alternatively proof : Let aH ∈ G/H and bK ∈ G/K, we can take their intersection
aH ∩ bK. Since any left H ∩K coset in G is an intersection c(H ∩K) = cH ∩ cK, we
know that there are at most mn many left H∩K cosets in G. It suffices to show that there
are at least lcm(m,n) many cosets. This follows from m and n both divide [G : H ∩K]
by the tower law (see Q5, and above).

Remark: There is yet an easier proof using Lagrange’s theorem if G is assumed to be
finite. However, in the infinite case, we have to work with cosets because the groups
G,H,K all have infinite orders.

Optional Part

1. The subgroup H = ⟨i⟩ is given by {1, i,−1,−i}. Its index is |Q|/|H| = 2, so the left
cosets are simply H and Q \H . The representatives of a coset is simply the elements in
the coset, so they are exactly H and Q \H = {j,−j, k,−k}.

2. (a) Recall that any reflection can be expressed as a product of s = s1 and r = r1.
Consider the products (sr3)s = sr3s = ssr−3 = r−3 = r3. This calculation
shows that H = {r0, r3, s1, s1r3} is a subgroup: indeed it suffices to check that it
is closed under multiplication and taking inverse. Each element is its own inverse.
And for multiplications, the only ”non-trivial” ones are r3s1 = s1r3 and along with
s1r3s1 = r3, which are both in H . So we have obtained a subgroup of order 4. In
fact, replacing s1 with any other reflection works.

(b) Consider H = ⟨r2, s1⟩, then H = {r0, r2, r4, s1, s1r2, s1r4}. It is a subgroup of
order 6. (See HW3 optional Q5b). It is also non-cyclic. Since the element r0 has
order 1, r2, r4 has order 3 and s1, s1r2, s1r4 has order 2. If it was cyclic, then there
would be some order 6 element.



3. Suppose G is a group with no nontrivial proper subgroup, and |G| ≥ 2, we will first show
that G has prime order. If it was not the case, say |G| is composite, write |G| = mn
for some positive integers m,n that are not equal to 1. Then elements of G would have
order dividing |G|. It is impossible to have |g| = |G| for all e ̸= g ∈ G. This is
because if |g| = |G| = mn for some g, then gm would have order n. So there are some
non-identity element h ∈ G of order strictly smaller than |G|, so that ⟨h⟩ is a nontrivial
proper subgroup of G. Now that we know |G| is prime, it must then be cyclic, since a
non-identity element g ∈ G must has order equals to |G|, so it is a generator.

4. If every left coset of H is a right coset of H , then for any left coset gH , there are some
a ∈ G so that gH = Ha. The condition g ∈ gH = Ha implies that there is some h ∈ H
so that g = ha. So Ha = Hg. Since g is arbitrary, we have shown that gH = Hg for any
g ∈ G, i.e. H ⊴ G.

5. Let S be the set of elements in G of order n, note that for any g ∈ G, we have gSg−1 = S,
since |x| = n if and only if |gxg−1| = n. It remains to prove that ⟨gSg−1⟩ = g⟨S⟩g−1,
then we have for any g ∈ G,

⟨S⟩ = ⟨gSg−1⟩ = g⟨S⟩g−1,

i.e. ⟨S⟩ is normal.

The equality ⟨gSg−1⟩ = g⟨S⟩g−1 holds in general for any subset S, not just the one de-
scribed above. This follows directly from (ga1g

−1)k1 · · · (gamg−1)km = g(ak11 · · · akmm )g−1,
where the LHS is a general element in ⟨gSg−1⟩ and RHS is a general element in g⟨S⟩g−1.


