THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Homework 4 Solutions
 22nd February 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. (a) Let $H=\langle 4\rangle=\{4 k: k \in \mathbb{Z}\} \leq \mathbb{Z}$, then for any $n \in \mathbb{Z}$, consider the left coset $n+H=\{n+4 k: k \in \mathbb{Z}\}$, here we use the notation $n+H$ instead of the commonly written form $n H$ to stress that we are considering addition as the group operation. Then $n+H=m+H$ if and only if $n-m=4 k$ for some $k \in \mathbb{Z}$. Thus the left coset $n H$ only depends on the value of $n \bmod 4$. So there are 4 left cosets: $H, 1+H, 2+H, 3+H$, they exactly correspond to the set of integers in \mathbb{Z} whose remainder is $n=0,1,2,3$ respectively when divided by 4 .
(b) Again let $H=\langle 4\rangle=\{0,4,8\} \leq \mathbb{Z}_{12}$ and consider $n+H$ for $n \in \mathbb{Z}_{12}$. Then the above discussion also holds in this case, meaning that the left cosets of H in \mathbb{Z}_{12} are exactly the set of integers in \mathbb{Z}_{12} whose remainders are $n=0,1,2,3$. So we have $H, 1+H=\{1,5,9\}, 2+H=\{2,6,10\}$ and $3+H=\{3,7,11\}$.
(c) Let s be a reflection, $H=\langle s\rangle=\{e, s\} \leq D_{n}$, for each reflection r^{k} where $k=$ $0,1, \ldots, k-1$, we have the cosets $r^{k} H=\left\{r, r^{k} s\right\}$. For $r^{j} \neq r^{k}$, we have $r^{j} H \neq r^{k} H$. This is due to $r^{j} r^{-k}=r^{j-k} \in\{e, s\}$ precisely when $r^{j-k}=e$, so that $j=k$. Since $|H|=2$ and $\left|D_{n}\right|=2 n$, by Lagrange's theorem, $\left[D_{n}: H\right]=2 n / 2=n$, so we have described all the left cosets.
2. A 4 -cycle in S_{4} will generate a cyclic subgroup of order 4 . For example, we may take $\sigma=(1234)$, and $H=\langle\sigma\rangle=\{e,(1234),(13)(24),(1432)\}$. Note that $|H|=4$ and $\left|S_{4}\right|=24$, so there are 6 left cosets of H in S_{4}.
Clearly e represents the trivial coset H.
We may continue by taking an element outside H, say (12) and look at the coset represented by (12): (12) $H=\{(12),(234),(2413),(143)\}$.
Again, we can continue by picking an element outside H and (12) H, say (23), and consider $(23) H=\{(23),(341),(2431),(214)\}$.

Next, we take (13), we have (13) $H=\{(13),(12)(34),(24),(14)(23)\}$.
Next we pick (14), we have (14) $H=\{(14),(123),(1342),(432)\}$.
Note that (34) is not in any of the above cosets. So we may pick (34) and consider (34) $H=\{(34),(312),(1423),(132)\}$.

Since we have written down 6 different cosets, they must be all the cosets of H in S_{4}.
3. By Lagrange's theorem, every proper subgroups of G has order dividing $|G|=p q$, so they have orders either 1 or p or q. If the subgroup has order 1, it is the trivial group, which is cyclic. Otherwise, the subgroup has order p or q, which are assumed to be prime. Recall that a group of prime order is always cyclic. This finishes the the proof.
4. See the solution to Tutorial 5 Q2c. Note that we always have $H \unlhd G \Longleftrightarrow$ left and right cosets of H in G coincide.
5. See Tutorial 5 Q3.
6. First proof: Consider the sequence of subgroups $H \cap K \leq H \leq G$, by tower law for index of subgroups (see Q5 above), we have $[G: H \cap K]=[G: H][H: H \cap K]$. We will first show that there is a well-defined injective function

$$
f:\{\text { Left cosets of } H \cap K \text { in } H\} \rightarrow\{\text { Left cosets of } K \text { in } G\}
$$

therefore $[H: H \cap K] \leq[G: K]=n$. The function f is defined by $f(a H \cap K)=a K$. This is well-defined because if $a H \cap K=b H \cap K$, then $a b^{-1} \in H \cap K \leq K$, in particular $a K=b K$. This function is injective because if $f(a H \cap K)=f(b H \cap K)$, then $a b^{-1} \in K$, but then $a H \cap K$ and $b H \cap K$ are cosets in H, so a, b are assumed to be elements of H, so that $a b^{-1} \in H \cap K$, therefore $a H \cap K=b H \cap K$.
From the above, we have $[G: H \cap K]=[G: H][H: H \cap K] \leq[G: H][G: K]=m n$. The tower law also implies that $m=[G: H]$ divides $[G: H \cap K]$, similarly we can apply the tower law to the sequence $H \cap K \leq K \leq G$, which would imply that $n=[G: K]$ divides $[G: H \cap K]$. Therefore, $\operatorname{lcm}(m, n)$ divides $[G: H \cap K]$ and we have $\operatorname{lcm}(m, n) \leq$ $[G: H \cap K] \leq m n$. Now if $\operatorname{gcd}(m, n)=1$, then $\operatorname{lcm}(m, n)=m n / \operatorname{gcd}(m, n)=m n$. So both inequality signs must be equality, so $[G: H \cap K]=m n$.
Alternatively proof: Let $a H \in G / H$ and $b K \in G / K$, we can take their intersection $a H \cap b K$. Since any left $H \cap K$ coset in G is an intersection $c(H \cap K)=c H \cap c K$, we know that there are at most $m n$ many left $H \cap K$ cosets in G. It suffices to show that there are at least $\operatorname{lcm}(m, n)$ many cosets. This follows from m and n both divide [$G: H \cap K$] by the tower law (see Q5, and above).
Remark: There is yet an easier proof using Lagrange's theorem if G is assumed to be finite. However, in the infinite case, we have to work with cosets because the groups G, H, K all have infinite orders.

Optional Part

1. The subgroup $H=\langle i\rangle$ is given by $\{1, i,-1,-i\}$. Its index is $|Q| /|H|=2$, so the left cosets are simply H and $Q \backslash H$. The representatives of a coset is simply the elements in the coset, so they are exactly H and $Q \backslash H=\{j,-j, k,-k\}$.
2. (a) Recall that any reflection can be expressed as a product of $s=s_{1}$ and $r=r_{1}$. Consider the products $\left(s r_{3}\right) s=s r^{3} s=s s r^{-3}=r^{-3}=r_{3}$. This calculation shows that $H=\left\{r_{0}, r_{3}, s_{1}, s_{1} r_{3}\right\}$ is a subgroup: indeed it suffices to check that it is closed under multiplication and taking inverse. Each element is its own inverse. And for multiplications, the only "non-trivial" ones are $r_{3} s_{1}=s_{1} r_{3}$ and along with $s_{1} r_{3} s_{1}=r_{3}$, which are both in H. So we have obtained a subgroup of order 4. In fact, replacing s_{1} with any other reflection works.
(b) Consider $H=\left\langle r_{2}, s_{1}\right\rangle$, then $H=\left\{r_{0}, r_{2}, r_{4}, s_{1}, s_{1} r_{2}, s_{1} r_{4}\right\}$. It is a subgroup of order 6. (See HW3 optional Q5b). It is also non-cyclic. Since the element r_{0} has order $1, r_{2}, r_{4}$ has order 3 and $s_{1}, s_{1} r_{2}, s_{1} r_{4}$ has order 2 . If it was cyclic, then there would be some order 6 element.
3. Suppose G is a group with no nontrivial proper subgroup, and $|G| \geq 2$, we will first show that G has prime order. If it was not the case, say $|G|$ is composite, write $|G|=m n$ for some positive integers m, n that are not equal to 1 . Then elements of G would have order dividing $|G|$. It is impossible to have $|g|=|G|$ for all $e \neq g \in G$. This is because if $|g|=|G|=m n$ for some g, then g^{m} would have order n. So there are some non-identity element $h \in G$ of order strictly smaller than $|G|$, so that $\langle h\rangle$ is a nontrivial proper subgroup of G. Now that we know $|G|$ is prime, it must then be cyclic, since a non-identity element $g \in G$ must has order equals to $|G|$, so it is a generator.
4. If every left coset of H is a right coset of H, then for any left coset $g H$, there are some $a \in G$ so that $g H=H a$. The condition $g \in g H=H a$ implies that there is some $h \in H$ so that $g=h a$. So $H a=H g$. Since g is arbitrary, we have shown that $g H=H g$ for any $g \in G$, i.e. $H \unlhd G$.
5. Let S be the set of elements in G of order n, note that for any $g \in G$, we have $g S g^{-1}=S$, since $|x|=n$ if and only if $\left|g x g^{-1}\right|=n$. It remains to prove that $\left\langle g S g^{-1}\right\rangle=g\langle S\rangle g^{-1}$, then we have for any $g \in G$,

$$
\langle S\rangle=\left\langle g S g^{-1}\right\rangle=g\langle S\rangle g^{-1}
$$

i.e. $\langle S\rangle$ is normal.

The equality $\left\langle g S g^{-1}\right\rangle=g\langle S\rangle g^{-1}$ holds in general for any subset S, not just the one described above. This follows directly from $\left(g a_{1} g^{-1}\right)^{k_{1}} \cdots\left(g a_{m} g^{-1}\right)^{k_{m}}=g\left(a_{1}^{k_{1}} \cdots a_{m}^{k_{m}}\right) g^{-1}$, where the LHS is a general element in $\left\langle g S g^{-1}\right\rangle$ and RHS is a general element in $g\langle S\rangle g^{-1}$.

